Effect of varying number of OSEM subsets on PET lesion detectability.

نویسندگان

  • A Michael Morey
  • Dan J Kadrmas
چکیده

UNLABELLED Iterative reconstruction has become the standard for routine clinical PET imaging. However, iterative reconstruction is computationally expensive, especially for time-of-flight (TOF) data. Block-iterative algorithms such as ordered-subsets expectation maximization (OSEM) are commonly used to accelerate the reconstruction. There is a tradeoff between the number of subsets and reconstructed image quality. The objective of this work was to evaluate the effect of varying the number of OSEM subsets on lesion detection for general oncologic PET imaging. METHODS Experimental phantom data were taken from the Utah PET Lesion Detection Database, modeling whole-body oncologic (18)F-FDG PET imaging of a 92-kg patient. The experiment consisted of 24 scans over 4 d on a TOF PET/CT scanner, with up to 23 lesions (diameter, 6-16 mm) distributed throughout the thorax, abdomen, and pelvis. Images were reconstructed with maximum-likelihood expectation maximization (MLEM) and with OSEM using 2-84 subsets. The reconstructions were repeated both with and without TOF. Localization receiver-operating-characteristic (LROC) analysis was applied using the channelized nonprewhitened observer. The observer was first used to optimize the number of iterations and smoothing filter for each case that maximized lesion-detection performance for these data; this was done to ensure that fair comparisons were made with each test case operating near its optimal performance. The probability of correct localization and the area under the LROC curve were then analyzed as functions of the number of subsets to characterize the effect of OSEM on lesion-detection performance. RESULTS Compared with the baseline MLEM algorithm, lesion-detection performance with OSEM declined as the number of subsets increased. The decline was moderate out to about 12-14 subsets and then became progressively steeper as the number of subsets increased. Comparing TOF with non-TOF results, the magnitude of the performance drop was larger for TOF reconstructions. CONCLUSION PET lesion-detection performance is degraded when OSEM is used with a large number of subsets. This loss of image quality can be controlled using a moderate number of subsets (e.g., 12-14 or fewer), retaining a large degree of acceleration while maintaining high image quality. The use of more aggressive subsetting can result in image quality degradations that offset the benefits of using TOF or longer scan times.

منابع مشابه

Accelerated time-of-flight (TOF) PET image reconstruction using TOF bin subsetization and TOF weighting matrix pre-computation.

Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results ...

متن کامل

Phantom and Clinical Evaluation of the Bayesian Penalized Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System.

UNLABELLED Q.Clear, a Bayesian penalized-likelihood reconstruction algorithm for PET, was recently introduced by GE Healthcare on their PET scanners to improve clinical image quality and quantification. In this work, we determined the optimum penalization factor (beta) for clinical use of Q.Clear and compared Q.Clear with standard PET reconstructions. METHODS A National Electrical Manufacture...

متن کامل

Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

Objective(s): We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF)-based positron emission tomography (PET) image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL) for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline or...

متن کامل

Effect of 18F-FDG uptake time on lesion detectability in PET imaging of early stage breast cancer.

Prior reports have suggested that delayed FDG-PET oncology imaging can improve the contrast-to-noise ratio (CNR) for known lesions. Our goal was to estimate realistic bounds for lesion detectability for static measurements with one to four hours between FDG injection and image acquisition. Tumor and normal tissue kinetic model parameters were estimated from dynamic PET studies of patients with ...

متن کامل

Interpreting results from a comparative study of lesion detectability for 6 different PET systems.

The article by Kadrmas and Christian (1), which appears in this issue of The Journal of Nuclear Medicine, is a well-written account of a comprehensive study that compares lesion detectability of 6 different commercial PET imaging systems, including 2 state-ofthe-art high-resolution dedicated bismuth germanate (BGO) systems, an older dedicated BGO system, a dedicated NaI(Tl) system, and 3 NaI(Tl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of nuclear medicine technology

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2013